There are many applications where abrasive waterjet is the superior cutting method. Although waterjet should be considered for all applications, it will not replace conventional cutting methods such as stamping, laser or plasma cutting. It will continue to experience increasing use for cutting a wide variety of specialty materials.
Abrasive waterjet cutting |
Abrasive waterjet cutting utilizes a high velocity coherent stream of water and abrasive that can be used to cut almost all materials. Water at 40,000 to 55,000 psi accelerates through a sapphire, ruby or diamond orifice. The stream passes through a mixing region where the vacuum, induced by the stream, sucks in abrasive. Momentum of the water stream accelerates and entrains abrasive as it passes through the nozzle. The stream exits the nozzle as a three phase mixture of air, water and abrasive particles with a cutting diameter of 0.020” to 0.060”. The high velocity abrasive particles impact on the kerf face and do the actual cutting. Kerf material is removed as microchips, with no negligible affects on the material.
The cutting stream carries 0.5 to 1.5 pounds per minute of abrasive. The quantity of abrasive is dependent on the cutting stream size, which is selected based on the material to be cut. Garnet is by far the most commonly used abrasive. It is environmentally clean, contains no free silica, and combines good cutting ability with reasonable wear on the consumables. Other less commonly used abrasives are olivine sand, silica sand and slag by-products. Due to its high Moh’s hardness, aluminum oxide has been rarely used, for cutting of very hard materials. Because of its high hardness aluminum oxide rapidly wears out the nozzle and is expensive to operate. Most shops use the abrasive once and then it is disposed as land fill waste.
The main attributes of the cut are: no heat, narrow kerf, good edge finish, and high accuracy. Successful, cost effective, abrasive waterjet applications take advantage of these characteristics.