Pages

Sunday, December 28, 2008

How Waterjet cuttingworks

How Waterjet cutting works
In the battle to reduce costs, engineering and manufacturing departments are constantly on the lookout for an edge. The waterjet process provides many unique capabilities and advantages that can prove very effective in the cost battle. Learning more about the waterjet technology will give you an opportunity to put these cost-cutting capabilities to work.

Diagram of waterjet cutting works
Beyond cost cutting, the waterjet process is recognized as the most versatile and fastest growing process in the world (per Frost & Sullivan and the Market Intelligence Research Corporation). Waterjets are used in high production applications across the globe. They compliment other technologies such as milling, laser, EDM, plasma and routers. No noxious gases or liquids are used in waterjet cutting, and waterjets do not create hazardous materials or vapors. No heat effected zones or mechanical stresses are left on a waterjet cut surface. It is truly a versatile, productive, cold cutting process.

The waterjet has shown that it can do things that other technologies simply cannot. From cutting whisper thin details in stone, glass and metals; to rapid hole drilling of titanium; to cutting of food, to the killing of pathogens in beverages and dips, the waterjet has proven itself unique.

How High Pressure Water is created
The basic technology is both simple and extremely complex. At its most basic, water flows from a pump, through plumbing and out a cutting head. It is simple to explain, operate and maintain. The process, however, incorporates extremely complex materials technology and design. To generate and control water at pressures of 60,000 psi requires science and technology not taught in universities. At these pressures a slight leak can cause permanent erosion damage to components if not properly designed. Thankfully, the waterjet manufacturers take care of the complex materials technology and cutting-edge engineering. The user need only be knowledgeable in the basic waterjet operation.

Essentially, there are two types of waterjets; (1) pure waterjet and (2) abrasive waterjet. Machines are designed to employ only waterjet, only abrasive waterjet, or both. With any type, the water must first be pressurized.

The Pump
The pump is the heart of the waterjet system. The pump pressurizes the water and delivers it continuously so that a cutting head can then turn that pressurized water into a supersonic waterjet stream. Two types of pump can be used for waterjet applications — an intensifier based pump and a direct drive based pump.

No comments: